Journal Center
Journal Center
Current Position:Homepage > 期刊目录
鼠李糖乳杆菌GKLC1减少香烟烟雾引起的过敏性炎症
Author: 石仰慈, 蔡侑珊, 林诗伟, 陈炎炼
Unit: 【测试】作者单位
Date: 2024-12-09 00:00:00
PDF Load: pdf
摘要:摘要: 香烟烟雾(cigarette smoke, CS)中含有多种有害物刺激物,容易经呼吸道吸入引起过敏性炎症反应,特别是对已具过敏体质者。本研究评估鼠李糖乳杆菌(Lactobacillus rhamnosus)菌株GKLC1对降低香烟烟雾引起之过敏性炎症反应的效果。实验采用7周龄之Balb/c雄性小鼠随机分成过敏对照组(OVA + CS)与菌株GKLC1组(GKLC1),每组6只。所有试验小鼠于试验第0、12天进行腹腔注射卵白蛋白抗原(Ovalbumin, OVA, 500 ug/ml),并于试验第17日至23日以2% OVA进行喷雾致敏,诱发过敏体质。试验第24日至54日,小鼠每日暴露10分钟之香烟烟雾加剧过敏性炎症反应。比较过敏性小鼠于CS刺激期间每日补充菌株GKLC1 (4.5 mg/day)与否,对于体内发炎相关指标之影响。结果发现,菌株GKLC1组之小鼠血清中内毒素显著低于过敏对照组(p < 0.001),且肝脏中的细胞激素IFN-γ、TNF-α、IL-4、IL-5分泌量皆显著减少,显示菌株GKLC1补充有助于降低香烟烟雾引起之过敏性发炎反应。 Abstract
关键词:益生菌;过敏;香烟烟雾;内毒素;细胞因子;发炎;Probiotics; Allergy; Cigarette Smoke; Endotoxin; Cytokines; Inflammation
参考文献:
[1]Wills, T.A., Soneji, S.S., Choi, K., Jaspers, I. and Tam, E.K. (2020) E-Cigarette Use and Respiratory Disorders: An Integrative Review of Converging Evidence from Epidemiological and Laboratory Studies. European Respiratory Journal, 57, Article 1901815.
https://doi.org/10.1183/13993003.01815-2019
[2]Soleimani, F., Dobaradaran, S., De-la-Torre, G.E., Schmidt, T.C. and Saeedi, R. (2022) Content of Toxic Components of Cigarette, Cigarette Smoke vs Cigarette Butts: A Comprehensive Systematic Review. Science of the Total Environment, 813, Article 152667.
https://doi.org/10.1016/j.scitotenv.2021.152667
[3]Ueha, R., Ueha, S., Kondo, K., Nishijima, H. and Yamasoba, T. (2020) Effects of Cigarette Smoke on the Nasal Respiratory and Olfactory Mucosa in Allergic Rhinitis Mice. Frontiers in Neuroscience, 14, Article 126.
https://doi.org/10.3389/fnins.2020.00126
[4]Bircan, E., Bezirhan, U., Porter, A., Fagan, P. and Orloff, M. (2021) Electronic Cigarette Use and Its Association with Asthma, Chronic Obstructive Pulmonary Disease (COPD) and Asthma-COPD Overlap Syndrome among Never Cigarette Smokers. Tobacco Induced Diseases, 19, 1-10.
https://doi.org/10.18332/tid/142579
[5]Crotty Alexander, L.E., Drummond, C.A., Hepokoski, M., Mathew, D., Moshensky, A., Willeford, A., et al. (2018) Chronic Inhalation of E-Cigarette Vapor Containing Nicotine Disrupts Airway Barrier Function and Induces Systemic Inflammation and Multiorgan Fibrosis in Mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314, R834-R847.
https://doi.org/10.1152/ajpregu.00270.2017
[6]Hirose, K., Iwata, A., Tamachi, T. and Nakajima, H. (2017) Allergic Airway Inflammation: Key Players Beyond the Th2 Cell Pathway. Immunological Reviews, 278, 145-161.
https://doi.org/10.1111/imr.12540
[7]Al-Harbi, N.O., Nadeem, A., Al-Harbi, M.M., Ansari, M.A., AlSharari, S.D., Bahashwan, S.A., et al. (2016) Airway Oxidative Stress Causes Vascular and Hepatic Inflammation via Upregulation of IL-17A in a Murine Model of Allergic Asthma. International Immunopharmacology, 34, 173-182.
https://doi.org/10.1016/j.intimp.2016.03.003
[8]Srutkova, D., Kozakova, H., Novotna, T., Gorska, S., Hermanova, P.P., Hudcovic, T., et al. (2023) Exopolysaccharide from Lacticaseibacillus rhamnosus Induces IgA Production in Airways and Alleviates Allergic Airway Inflammation in Mouse Model. European Journal of Immunology, 53, Article 2250135.
https://doi.org/10.1002/eji.202250135
[9]Hou, Y., Zheng, S., Zou, F., Wang, D., Da, H., Zhou, Y., et al. (2023) Lactobacillus rhamnosus 76 Alleviates Airway Inflammation in Ovalbumin-Allergic Mice and Improves Mucus Secretion by Down-Regulating STAT6/SPDEF Pathway. Immunobiology, 228, Article 152712.
https://doi.org/10.1016/j.imbio.2023.152712
[10]Wannamethee, S.G. and Shaper, A.G. (2010) Cigarette Smoking and Serum Liver Enzymes: The Role of Alcohol and Inflammation. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 47, 321-326.
https://doi.org/10.1258/acb.2010.009303
[11]Tsai, Y., Lin, S., Chen, Y. and Chen, C. (2020) Effect of Probiotics Lactobacillus paracasei GKS6, L. plantarum GKM3, and L. rhamnosus GKLC1 on Alleviating Alcohol-Induced Alcoholic Liver Disease in a Mouse Model. Nutrition Research and Practice, 14, 299-308.
https://doi.org/10.4162/nrp.2020.14.4.299
[12]Garth, J., Barnes, J.W. and Krick, S. (2018) Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. International Journal of Molecular Sciences, 19, Article 3402.
https://doi.org/10.3390/ijms19113402
[13]Paternoster, G. (2023) Strategies to Reduce Endotoxin Activity. In: De Rosa, S. and Villa, G., Eds., Endotoxin Induced-ShockA Multidisciplinary Approach in Critical Care, Springer International Publishing, 117-125.
https://doi.org/10.1007/978-3-031-18591-5_13


引用:

测试数据